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Abstract 

Previous research conducted at Lawrence Livermore National Laboratory (LLNL) and the Air 

Force Institute of Technology (AFIT) has shown a correlation between actinide location and 

elemental composition in fallout from historic atmospheric nuclear weapons testing.  Fifty 

spherical fallout samples were collected from near ground zero of a surface burst weapons test.  

The samples were mounted in an aluminum puck then ground and polished to a hemisphere 

exposing the central plane.  Physical morphologies of the samples ranged from clear to opaque 

with inclusions, voids, and/or uniform characteristics.  Spectroscopy data were collected using 

optical microscopes and scanning electron microscopy (SEM), with radioactivity recorded 

through autoradiography.  Principal component analysis (PCA) was used to quantify the 

variations within the samples and to determine the correlations between major elemental 

compositions and the incorporation of unspent nuclear fuel.  Principal component analysis 

identified four statistically significant principal components accounting for 78% of the variations 

within the spectroscopy data.  Principal component analysis was demonstrated as a suitable 

mathematical approach to solving the complex system of elemental variables while establishing 

correlations to actinide incorporation within the fallout samples.  A model was developed using 

spot sampling to categorize the samples, identifying three classes of samples.  The model 

correctly identified samples with above average uniform activity, thereby identifying samples 

with high forensic value for recovery of unspent nuclear fuel.  Final analysis of the full elemental 

composition and the correlation with regions of increased activity for all fifty samples is currently 

being completed. 
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USING PRINCIPAL COMPONENT ANALYSIS TO IMPROVE FALLOUT 
CHARACTERIZATION 

 
 

I. Introduction 

This research focused on the application of tools and techniques applied to a 

broad sample set of fallout particles to improve the fallout characterization.  The research 

consisted of characterizing the fallout using scanning electron microscopy coupled with 

energy-dispersive x-ray spectroscopy (SEM/EDX) and micro X-ray Fluorescence (micro-

XRF) to create 2-D elemental surface maps of the fallout particles.  Autoradiography was 

used to create 2-D radiation maps of the fallout particles.  Principal component analysis 

(PCA) was then applied to identify spatial correlations between elemental composition 

and the presence of unburned weapon fuel in the fallout particles.  This analysis resulted 

in an improved the understanding of fallout formation and provides a means of using 

particle morphology to reduce the effort needed to identify the presence of higher levels 

of unburned nuclear fuel in fallout particles.   

1.1. Overview 

 Current high fidelity methods of post-detonation forensic are time consuming.  

The ability to focus these methods on areas of highest potential value will reduce the time 

needed to provide important design information and source attribution following a post-

detonation recovery event [1].  Forensic recovery efforts are vital to attribution and fall 

under the umbrella of deterrence.  The ability to attribute a weapon to the manufacturer or 
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nation state will enhance global safety and vigilance against the deliberate use of nuclear 

weapons [2]. 

The goal of this research was to improve the fallout characterization process 

through the use of PCA.  Samples collected from a historic weapons test were subjected 

to non-destructive tests to spatially characterize the level of radioactivity and elemental 

composition.  Understanding the spatial distribution of elemental composition and levels 

of radioactivity can result in an improved understanding of fallout formation.  Improved 

understanding of fallout formation is vital to the improvement of forensic techniques for 

post detonation evaluation and attribution.  This research builds upon previous Master’s 

theses completed at AFIT and work performed by the National Labs during the last 

decade.   

 Samples in this research were selected by Lawrence Livermore National Lab 

(LLNL) scientists from bulk samples of fallout and soil collected from one historic 

weapon test.  These samples were mounted in an aluminum puck using epoxy then 

polished down to a hemisphere exposing the mid-plane of each particle.  This mounting 

method provides a means of identification for each sample particle.  Recent 

improvements to the autoradiography system at LLNL were also investigated to 

determine if the improvements yield better results than those collected during the 

previous efforts [3] [4].   

 Once the elemental compositions were mapped using SEM/EDX and spatially 

correlated with the autoradiography results, PCA was applied to the resulting data set.  

PCA provides a quantitative method to determine the correlation between elemental 

composition variations and radioactivity [5].  Past application of PCA to fallout samples 
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showed that it can quickly identify elemental composition that has a strong correlation to 

the presence of elevated levels of radioactivity allowing a more efficient application of 

time intensive forensic methods [6].  This research will build upon that success by 

increasing the available data and improving the correlation between elemental 

compositions of carrier material and radioactivity, and hence the presence of actinides.   

1.2.  Problem Statement 

Various methods of spectroscopy were used to characterize the fallout samples 

taken from a historical nuclear weapons test.  This characterization focused on 

identifying the chemical compositions co-located with radioactivity in the samples.  By 

applying PCA to the spectroscopy data, spatial correlation between the major elemental 

compositions and radioactivity were revealed.  Improving the understanding of spatial 

correlation between elemental compositions and radioactivity will focus forensic 

recovery efforts to samples of highest forensics value.  Identifying samples of higher 

potential forensics value will reduce the time and materials required to characterize an 

event, while increasing the quantity of recovered unspent nuclear fuel.   

1.3. Scope of Study 

This research focused on the completion of the AR and SEM/EDX data collection 

for the samples prepared by LLNL.  The data was then analyzed using principal 

component analysis.  Completion of the data collection and PCA analysis accomplished 

the year one and two goals of the three-year Midas program as outlined in the June 2016 

quarterly performance report [7] [2].   
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1.4.  Sponsorship 

This work is paid for under the Midas program, Defense Threat Reduction 

Agency (DTRA), as part of a three-year joint effort by LLNL and AFIT.   
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II. Literature Review 

The analysis and characterization of fallout samples has been conducted since the 

first nuclear weapon test.  Of specific interest to this study is the work performed using 

non-destructive techniques to determine the formation and the elemental composition of 

carrier material correlations to unspent nuclear fuel.  The location of unspent fuel within 

fallout particles is important for proper attribution and forensics work to reconstruct the 

type of device, location of manufacture and sophistication of design [8].  

2.1. Early Work 

The blast, thermal, and radiation effects of nuclear weapons have been the focus of 

weapon research since the first atomic tests [9].  These studies documented the fallout as 

a radiation source and a means of determining weapon characteristics.  Nuclear fallout 

research conducted during the 1950’s and 60’s sought to characterize the bulk properties 

of fallout.  A consolidated report was compiled in 1965 providing these bulk properties of 

nuclear fallout [10].  The goal of this consolidated report was to understand how fallout 

developed, determine different classifications of fallout, and assess how fallout would be 

dispersed for various detonation and environmental scenarios.  This report led to the 

current understanding of fallout formation from different weapon types and weapon 

employment scenarios [10].  This understanding was then applied to deliberate fallout 

management, improved testing safety and effective fallout use in war time scenarios.   

Fallout consists of fission fragments, unspent nuclear fuel, and in surface bursts 

scenarios, local soil and structures vaporized by the fireball.  The early radioactivity from 

an event is dominated by the short-lived fission fragments and bulk carrier material that 



6 

may contain activated elements.  However, long-lived fragments and unspent nuclear fuel 

still pose a significant health hazard years to decades after an event.  Currently to recover 

nuclear fuel information a large amount of fallout must be analyzed.  This large quantity 

of fallout presents a significant health hazard to the workers and significant clean-up 

efforts are required after processing.  In early research the recovery of nuclear fuel was a 

byproduct of determining the splitting ratio for each weapon fuel [10].   

Each nuclear fuel has a specific splitting ratio when exposed to different energy 

neutrons, often referred to as the double humped curve [11].  Figure 1 shows the double 

humped curve for thermal neutron fission of 235U.  The energy of the neutrons and the 

type of fuel produces a unique spectrum which provides insight into the design of the 

fission device.  Through these early studies, many properties of nuclear fission have been 

explored and documented [9].  However, much remains unclear concerning the 

incorporation of the unspent fuel in the fallout.   
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2.2.  Recent Work 

 Research into fallout formation processes has been conducted by LLNL and AFIT 

with the goal of improving forensic post-detonation recovery efforts.  These research 

efforts focused on the correlation and co-location of elements and unspent fuel via the 

fallout’s radiation signature. 

 
Figure 1. The double hump curve for uranium-235 showing the effective fission yield by mass 
number for thermal neutrons.  Reproduced with permission from [29]. 
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Monroe 

Completed in 2013, Monroe’s research analyzed twelve 1.0 mm diameter fallout 

samples.  These samples were mounted in a one-inch diameter aluminum puck of similar 

construction to the holder used in this research.  Elemental spectroscopy was completed 

using micro-XRF and SEM/EDS with activity determined using autoradiography.  These 

spectroscopy techniques were used to determine if a positive correlation existed between 

the unspent fuel and elemental composition.  The research focused on developing 

techniques that could reduce the amount of time spent analyzing fallout particles during a 

time-critical event.  Monroe concluded that micro-XRF could be used for bulk analysis 

but was not suitable for determining the presence of trace unspent fuel incorporated into 

the fallout [4].  Figure 2 shows the optical images of the samples while Figure 3 shows 

the autoradiography images of the samples.  Monroe used the optical images to hand 

align the SEM and autoradiography images for comparison.  The aligned autoradiography 

and elemental concentration images provided an anecdotal correlation between the 

activity for various regions and the major elements.  Monroe concluded that 

concentrations of calcium and aluminum presented a positive correlation to concentrated 

actinide regions. 

 

 
Figure 2. Optical images of the 12 samples used by Monroe [4].  These samples showed a wide 
range of morphologies capturing bulk characteristics for the fallout sample set. 
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Dierken 

 In 2014 Dierken took the results of Monroe and expanded the study to 48 particles 

< 1 mm in diameter.  Using micro-XRF, autoradiography, and SEM, Dierken 

investigated the fallout particles to determine if previous results held for a larger sample 

set.  Low XRF resolution and degraded equipment performance prevented quantification 

of results.  However, Dierken concluded that regions of high diffusion incorporated more 

unspent fuel than other regions within the same fallout sample particle.  High diffusive 

regions have a low viscosity allowing elemental mixing to occur to a higher degree than 

more viscous compositions.  The diffusive glass composition that showed higher activity 

was mafic glass [3].  Mafic glass is characterized by high percentages of calcium (26%) 

diffused with silicon (45%), aluminum (15%), magnesium (8%) and trace amounts of 

iron (2%).   

Holliday 

 Holliday recently compiled the results of several studies for publication [11].  His 

work incorporated Monroe, Dierken, and other LLNL researcher’s results.  The study 

investigated historic tests to determine if elemental compositions and actinide 

 
Figure 3. Autoradiography images of the 12 samples areas of high radioactivity appear darker in 
the image [4]. 
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correlations were present across a variety of local soil types and weapon emplacements.  

Based on his findings the fallout could be described by four compositional endmembers.  

The endmembers represent the idealized elemental composition used to describe the 

entire sample set.  From these studies the resulting endmembers were silicon dioxide, 

mafic glass, felsic glass, and apparent inclusions.  The inclusions are small areas with a 

dominant high element concentration as an oxide.   

All data points from a sample can be described as a linear combination of these 

endmembers, allowing for statistical variations from point to point.  These endmembers 

were determined through a variety of mathematical methods such as PCA.  From the 

investigations of multiple studies, it was proposed that a simple melt and mix model 

would accurately describe the incorporation of the unspent nuclear fuel in the fallout 

samples, instead of the conventional condensation mechanism.  Holliday concluded that 

the endmember composition was more important to the plutonium incorporation than any 

specific element such as calcium or iron [12].  In Figure 4 a calcium EDS map shows an 

anecdotal correlation to the areas of activity for this sample.   
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 However, an abundance of calcium does not indicate the presence of unspent 

nuclear fuel.  Indeed, several samples showed a decrease in activity in regions of calcium 

or iron rich inclusions [12].  This observation suggests that it is the physical properties of 

the endmembers not the chemical properties of a single element that is responsible for the 

incorporation and distribution of unspent nuclear fuel.  Based on these endmembers the 

simple melt and mix model cannot accurately describe the incorporation of nuclear fuel.  

The melting point of mafic glass (12610 C) is much higher than that of felsic glass (7200 

C) which is close to the melting point of the plutonium fuel (6400 C) but is noted for its 

decrease in activity.   

 The physical property identified in Holliday’s study most likely responsible for 

the inclusion of nuclear fuel with this endmember was viscosity.  It was proposed that the 

lower viscosity allowed greater mixing with the plutonium increasing the concentration 

within this endmember.  By looking at the physical properties of the endmembers across 

a range of temperatures this was one of the only properties that was not bracketed by the 

 
Figure 4. EDS map of calcium concentration and corresponding autoradiography image of 
sample.  The higher activity area is directly correlated to higher concentrations of calcium [12]. 
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other compositions, as shown in Figure 5.  Under this assumption, the individual major 

elements matter only when part of the endmembers and not from other sources.   

 

Castro 

 To provide qualitative results, a mathematical solution was required to provide 

correlations beyond the anecdotal observations noted earlier.  This approach allows the 

data set to be viewed as a system of equations.  By approaching the problem in this way, 

it is possible to determine qualitatively the correlations between the variables of the 

system.  Castro’s research applied principal component analysis (PCA) to three fallout 

samples sets and a standard reference material provided by the National Institute of 

Standards (NIST).  The goal of this study was to show that PCA was capable of 

 
Figure 5. Viscosity as a function of temperature for the major end member compositions of 
silicon dioxide, felsic and mafic glasses.  Figure used with permission [12]. 
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separating data sets based on variations within the data and thus identifying those 

samples that are compositionally similar and to what degree.  Specifically, if it was 

possible to identify fallout compared to other similar compositions within a data set.  

Before applying PCA to the data, Castro had to verify that the variables could be 

described as a linear combination.  To be a valid solution, linearity of the system’s 

variables must be established.   

PCA is used to analyze complex data sets composed of multiple variables.  This 

method reduces the data to an eigenvector/eigenvalue problem.  The solution set of 

eigenvectors and eigenvalues capture the variations within a data set, and where the 

largest eigenvalue indicates the eigenvector that captures the greatest variation.  The 

eigenvectors are a mathematical construct that uses the linearity of the variables to 

represent the system in a new way.  One could imagine these eigenvectors as new 

variables describing each data point in a new basis directly mapped to the original values.  

Thus, PCA allows determination of which carrier material’s elements unspent fuel is 

most likely to be collocated with. 

Using PCA, Castro was able to separate the standard reference material from the 

fallout samples as shown in Figure 6.  The distinct compositional variation between the 

fallout samples and the reference material is clearly visible in this solution.  Using PCA it 

was possible to separate the reference material (2702 & 2703) and the fallout samples.  

This was possible due to how well the principal components represented the entire data 

set and the variations between fallout and the reference material.  Castro concluded that 

PCA was suitable for analysis of spot sampled elemental spectroscopy data [6].  
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2.3. Fallout Formation 

During the first several microseconds of a nuclear event all elements in the 

fireball or core are heated to plasma.  The rapidly expanding fireball will begin to mix 

material from the device and the immediate local environment.  As the fireball expands it 

begins to cool through radiative heating and spherical divergence.  During the expansion 

and cooling, local material may not be heated to plasma resulting in various melt phases 

or solids being mixed into the weapon debris.  During the cooling process elements begin 

to condense and form particles with higher melting point elements condensing first [11].  

 
Figure 6. PCA results for the fallout samples and standard reference materials.  The standard 
reference materials were separated from the fallout data by PCA analysis [6].  This shows that 
PCA is capable of identifying fallout particles with different elemental compositions. 
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Larger particles that experience only local material melting are referred to as fallout and 

are the focus of this research.  With the incorporation of unspent nuclear fuel, these larger 

fallout particles contain vital forensic information needed to reconstruct the device [13].   

In addition to the unspent fuel and melted soil, fallout will also contain fission 

products.  These fission products are the result of the fission of nuclear fuel.  Fission 

products fall within two classes, refractory and volatile.  Refractory elements condense 

around 1620 K while the volatile elements condense in the 1000 K and lower range [11].  

Some fission products decay chains transition between the two classes as the isotopes 

decay to the daughter products.  While possible variations mean each fallout particle will 

be unique, the bulk characteristics will be largely defined by the nuclear fuel, 

composition of the melted soil, device design and sophistication, temperature ranges, and 

condensation times.   

Fallout produced from a near surface or surface burst will consist of weapon 

debris and local soil.  The expanding fireball will incorporate material from the local 

environment.  Depending on the time of incorporation and the fireball temperature the 

material can be in several different phases, from a plasma to a solid.  The toroidal motion 

leads to expansion and cooling of the fireball and mixing of the incorporated material.  

This range of material phases during mixing produces a wide variety in the fallout 

particles.  Some fallout particles will consist of melted soil mixed with condensed 

elements from the device core.  Typically uniform in appearance these particles fall in the 

homogenous category.  The other typical class consists of heterogeneous samples.  These 

samples contain partially melted, solid or liquid phase material mixed with the plasma in 

the fireball.  Because of the range of phases, heterogeneous samples will have obvious 
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regions that are different from other regions of the sample.  For a more detailed 

discussion on fallout formation, decay chains, and daughter products the reader is 

referred to the bibliography [11] [13] [14].  

2.4. Autoradiography 

Autoradiography is an imaging technique that uses the source radiation as a 

means of exposing an image plate or film.  This same principal is used in digital and 

camera films to capture the light from objects and store them on film.  This exposure of 

film by non-visible radiation was first identified by Wilhelm Roentgen in 1895 when he 

used x-rays to image his wife’s hand [15].  All types of ionizing radiation will darken a 

film when the particles deposit energy in the film.  The more energy deposited the darker 

the film will be.  This principal is widely used in medical applications to image organs 

after absorption of a radioactive solution [16].  Using the exposure on the film, it is 

possible to determine the activity of the fallout particles.  The more activity a particle 

exhibits the darker the exposure becomes.  Imaging all samples simultaneously allows 

comparisons of the relative sample activities.  Additionally, using the correct setup the 

autoradiography will record the area of the sample that the activity originated in.  This is 

possible by placing the source directly in contact with the film given the specific mean 

free path of the radiation emitted during film exposure. 

Of particular importance to this study is the alpha and beta activity of the fallout 

which will be recorded in the film.  Due to the definitive energy of the alpha particles and 

their short path lengths, alpha energy will be distinct and sharp when captured on film.  

The beta energy is a continuous distribution and the beta particles have longer path 
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lengths which causes a blurring or fuzzing of the image.  Several assumptions are made 

concerning the radiation recorded in the autoradiography.  First, photons have a relatively 

large mean free path compared to the film thickness so their interactions will be uniform 

and minimal.  Second, due to the time since the event, no significant exposure from 

fission fragments will be recorded.  Fission fragments are generally unstable with short 

half-lives when considering the time since the event.  With several decades since the 

event these fission fragments will have decayed to more stable isotopes in their respective 

chains.  The few remaining long lived fission fragment decay schemes are typically 

gamma radiation which reduces their interaction as already explained.  The rapid decay 

of fission fragments is well documented in various studies making this a reasonable 

assumption commonly used when studying historical fallout [11] [9] [3] [10] [12].  Under 

these two assumptions this research will attribute exposure in the autoradiography to 

alpha and beta activity due to the natural decay of unspent nuclear fuel and not any other 

source.   

2.5. Scanning Electron Microscopy 

The scanning electron microscope uses a beam of electrons to excite the surface 

layer of a sample.  The resulting excitation can be used to determine topographical 

features or the elemental composition.  Depending on the configuration the detector will 

be used to determine the energy of backscattered electrons (BSED) or secondary 

electrons (SE), or the resulting x-rays can be analyzed using x-ray energy dispersive 

spectroscopy (EDS).  EDS uses characteristic x-rays emitted from the targeted material 

caused by the interaction of the electron beam with the atoms in the material and 
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determines the energy of the resulting x-rays from the electron interaction.  Since 

characteristic x-rays are element specific, they are commonly used to determine 

elemental concentrations in a sample.  In Figure 7 an incident photon of radiation 

interacts with an inner shell electron.  If the inner shell electron absorbs enough energy 

from the radiation it is ejected from the atom.  When this happens, a higher shell electron 

decays into the inner shell releasing a specific energy.  This energy is dependent on the 

energy level of the electron that transitions into the inner shell.  Each element has specific 

energies for each shell or line and is well document [17]. 

 

This is the same principal used in the x-ray fluorescence which is discussed later.  

This phenomenon is well characterized and documented in the literature and the reader is 

referred to the bibliography for a more thorough discussion on the use of EDS and x-ray 

fluorescence [18].   

 

Figure 7. Incident radiation causes an electron to be ejected from the atom.  The resulting cascade 
from a higher electron results in a characteristic x-ray for that element.  
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Backscattered electron imaging relies on the principal of elastic scattering.  When 

the electron beam interacts with the surface layer many of the electrons will be scattered 

off the surface into the detector.  As the electrons interact with the surface the elastic 

collision energies will be proportional to Z2.  Where Z is the atomic number, or the 

number of protons in each element, and is the defining characteristic for each element.  

Since each atom has a specific Z the resulting electron energies from interactions are 

unique to each element.  This provides a contrast to the image as the electrons scatter off 

different elements will have a different energy than the starting beam.  This provides a 

grey scale image of the chemical variability of a sample [16].   

Secondary electron imaging uses inelastic scattering to free atomic electrons.  The 

incident electron from the electron beam imparts energy to the bound atomic electron 

freeing it from the atom.  These electrons can be collected or discarded depending on the 

detector configuration.  For the purpose of this study, the secondary electron imaging was 

used during the x-ray raster mapping and spot sampling.  For a more thorough 

introduction to SEM and its uses the reader is referred to the bibliography [16] [18]. 

2.6. X-ray Fluorescence 

X-ray fluorescence (XRF) uses the principal of characteristic x-rays, just like 

EDS, to reconstruct the elemental composition of a sample.  In this case, the excitation to 

free an atomic electron is done by either a photon from an isotope such as 60Co with a 

single energy or through bremsstrahlung radiation which produces photons with a 

varying band of energy.  Typically, a single energy photon source is used when 

investigating a specific element concentration.  The decay source photon energy must be 
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matched to the energy required to eject an inner shell electron of the desired element.  As 

the gamma source decays, the resulting photon has a probability to interact with the 

atomic electrons.  If the gamma ray interacts with an inner shell electron with sufficient 

energy it will eject the electron.  When this happens the resulting cascade of a higher 

shell electron will release energy in the form of characteristic x-rays which can be 

measured on a detector [19].   

The Horiba XRF uses the alternative method of inner shell electron excitation.  A 

broad spectrum of energies produced through bremsstrahlung radiation as depicted in 

Figure 8 irradiates the target sample providing the atomic electrons with enough energy 

to excite the electron to a higher orbital or eject the electron from the atom.  The 

development of the bremsstrahlung radiation relies on the principal of accelerating an 

electron and impacting it on a high-Z target.  The electron is accelerated by a high 

electric potential across a vacuum.  Upon impact with the target, the electron loses energy 

in the form of x-rays called bremsstrahlung radiation.  The resulting energy of the x-ray 

spectrum is highly dependent on the acceleration energy of the incident electron and the 

target material [20].   
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The variables of acceleration voltage and target material provide a method to tailor 

the resulting bremsstrahlung radiation to specific energy bands for a specific desired 

result.  Using a wide band of energy allows the researcher to excite a wide range of 

elements in the sample.  This produces a data set that records the abundance for many 

element in the sample and not just a single element.  A higher Z anode will provide a 

higher energy spectrum as will higher acceleration voltage.  This is a common method to 

generate radiation for research and medical techniques.  A more though discussion on 

these devices and applications can be found in the bibliography [19] [17].    

2.7. Principal Component Analysis 

 Principal component analysis is a mathematical technique that takes advantage of 

linear algebra to reduce the dimensionality of a data set revealing correlations and 

dependencies that would not otherwise be apparent [21].  Similar to a Fourier transform, 

 
Figure 8. Example generation of bremsstrahlung radiation using acceleration of electrons into a 
target. 
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a linear combination of the variables can represent the original system with fewer 

equations.  Adding more equations will bring the sum of the linear combinations closer to 

matching the system with smaller variance captured with each additional principal 

component.  The mathematical construct of sufficient principal components is critical to 

reducing the dimensionality of a problem.  Several methods exist to determine the 

sufficient number of principal components needed to represent the system, as discussed 

in Chapter III.3.5  

Using PCA to find a mathematical solution removes the dependence on multiple 

variables and recasting the problem as an eigenvector/eigenvalue problem [22].  This 

recasting reduces the dimensionality of the system to a smaller number of new variables 

called principal components.  By applying PCA, a problem with hundreds of variables 

can be expressed in a new frame with only a few variables, in some cases as few as two 

or three.  It is assumed that the eigenvectors of the problem can be written as a linear 

combination of the variables or observables.  If the data cannot be represented by an 

orthonormal basis, then any PCA solution is suspect.  In most cases linearity of the 

variables is a good starting assumption and can provide insight into the correlations 

between various variables in a data set [23].   

 Properly setting up the problem ensures that the data set can be analyzed by PCA.  

The first step is to recast each data point into a (m x n) matrix configuration.  Each row of 

the matrix represents one data point.  The columns of the matrix are assembled from the 

values of each variable recorded for every data point.  With this change the data set is 

focused on the variables and their values for each point instead of the point itself.  The 

data set is conditioned to remove unit dependence and arbitrary scaling.  Without 
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removing unit dependence, it is impossible to compare things like element counts and 

autoradiography intensity.  To remove unit dependence the data is mean centered, which 

is the process of subtracting the mean from the value of each data point for each variable.  

The scaling is completed by dividing by the standard deviation of the data point after 

subtracting off the mean [21].   

 The first step in solving the eigenvalue problem is taking the m x n matrix and 

solving for the covariance matrix.  The covariance matrix measures the difference 

between each variable from one point to the next.  This step removes influence due to 

high counts in one variable at one point and recasts the problem solving a simpler, similar 

problem.  Solving a similar matrix is a typical mathematical approach for solving 

complex systems by reducing the difficulty of the problem.  In the new problem, the 

eigenvectors are the solutions to the covariance matrix, which is n x n, and indicates how 

quickly each variable changes with respect to the other variables.  The larger a covariant 

matrix value, the greater the correlation between the two original variables with a zero 

indicating there is no correlation [5],  while negative values indicate a negative 

correlation.  Once a solution is found, the covariance matrix is no longer needed and the 

solution from the covariance matrix is translated to the original problem.  The values of 

the eigenvector components become the weighting factors that are used in the principal 

components to develop the linear combination.  The eigenvalue is the value of this 

eigenvector with the weighting factors for each of the original variables.   

 The final limitation of PCA assumes that the largest eigenvalue is the most 

important in describing the system.  Since the eigenvalues are the solutions for a similar 

matrix developed by looking at how much each variable changes, a sample set that has a 
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wide range of variation within one variable will skew the solution due to the large values 

this produces in the covariance matrix.  One way to verify that the solution represents the 

true system and not some inflation is to leave out one variable at a time and compare the 

solutions.  Like Fourier transforms, more equations used results in a better representation 

of the original when using PCA.  The more eigenvalues that are used in the analysis the 

more accurately the PCA will be in describing the data set [21].  However, increasing the 

number of PCs used also begins to represent the noise and errors inherent in any 

measurement.  For this reason, several methods are developed to ensure that the number 

of PCs selected is representative of the actual data of the system and not noise and errors. 
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III. Experiment 

3.1. Sample Preparation 

 In the early 2000’s a team from LLNL collected samples from multiple historic 

US atmospheric nuclear tests.  The samples for this study were selected from a plutonium 

fueled shot collected near ground zero.  To reduce bias in the mathematical model only 

three selection criteria where used to select samples for this study.  The first criteria is 

that the particle exhibited radioactive alpha and beta decays as observed with a detector.  

Second the particle needed to have a glassy appearance.  Combing these two criteria 

ensured that the particle was likely fallout swept into the nuclear fireball and not ground 

particles with surface contamination.  The final selection criterion was mean radius of the 

particles.  Using a #25 grid the particles where sifted out of the bulk collection cans.  A 

#25 grid has 25 lines per inch which makes the mean radius of the particles 

approximately 0.5 mm.  

 After sifting, the particles were monitored individually to determine the alpha and 

beta counts along with the gamma decay rates.  This counting was only performed to 

ensure that the particle contained radioactivity and will not serve as a data point during 

this research.  A one-inch diameter aluminum puck was drilled with a uniform grid 

pattern to hold the fallout particles as shown in Figure 9.   
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To aid in sample identification the particles are arranged in a grid numbered 

sequentially from left to right starting at the top left, this corner is identified by the indent 

and the blue arrow in Figure 9.  On rows four and five a particle was off set from the 

square grid.  These three fiducial marks were used to determine the orientation and 

positon during autoradiography, SEM, and XRF analysis.  Each particle was placed such 

that approximately half of the particle would be below the surface plane of the aluminum 

puck and secured in their individual holes using an epoxy.  Once the epoxy was set, the 

particles where ground down to a hemisphere using corundum polishing paper of a 

variety of grit sizes and finished with a 0.25-micron diamond paste.  This grinding 

 
Figure 9. Fallout samples secured in aluminum 1” puck.  Samples are numbered from left to right 
starting at the indent, shown with the blue arrow.  
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process ensured a smooth mirror surface while exposing the largest plane of the fallout 

material.  This smooth plane is required by the SEM/EDS for accurate elemental 

composition data. 

 Optical imaging was completed for the fifty samples to identify any features, such 

as voids cracks or surface defects, which could be used to match the autoradiography, 

SEM, and XRF images.  These surface features were removed from the SEM data set to 

ensure accurate data points.  Surface irregularities cause random scattering events 

lowering the SEM image quality.  Increased scattering events reduce the quantity of 

recovered electrons from the surface which reduces the resolution of the spectroscopy 

data.  These images provide the pixel mapping basis of the different imaging techniques 

employed to characterize the samples.   

3.2. Autoradiography 

Autoradiography was used to provide a pixel map of the nuclear fuel radioactivity 

within the fallout.  Recall that the assumption was made in Chapter II paragraph 2.4, that 

only the nuclear fuel activity is recorded on the film plate.  To provide a consistent 

measurement of activity all the samples were simultaneously imaged.  This ensured that 

the relative intensity of each fallout particle is recorded to compare to the other samples.  

With all particles coming from the same test and imaged at the same time no adjustment 

to activity needs to be made to account for the decay of the nuclear fuel.    
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The aluminum puck was secured to a height adjustment pin in a custom light tight 

enclosure provided by LLNL for performing autoradiography measurements on similar 

samples.  Known as the Stonebox this enclosure is shown in Figure 10.  The 

configuration used for this study places the samples in direct contact with the super 

resolution film with no attenuation medium used.  The leveling function of the height 

adjustment pin ensured that all samples contacted the film uniformly.  Direct contact with 

the film eliminates any attenuation as the alpha and beta particles traveled across an air 

gap before depositing energy in the film.  After leaving the sample in contact with the 5” 

× 4” film for 18 hours the film was processed using a Typhon FLA 7000 digital scanner 

shown in Figure 11.   

 
Figure 10. Aluminum puck prepared for autoradiography within the LLNL Stonebox. 
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The Typhoon scanner reads the film peeling off one layer of the image each time 

allowing multiple processing events and options from one exposure.  The settings for the 

Typhoon imaging software were selected based on previous exposures and calibration 

curves provided by LLNL and are recorded in Table 1.  

 

A darker pixel in the autoradiography image indicates a higher activity in that 

sample region.  The activity recorded per pixel can then be compared to the other pixels 

as the variation in activity within the sample set.  While it is possible to determine the 

counts from a properly calibrated film exposure it falls outside the scope of this study and 

only the relative variation between pixels and samples is used.  Figure 12 shows the final 

 
Figure 11. Typhoon scanner and standard film cassette used for the autoradiography. 

Table 1. Typhoon FLA 7000 digital scanner settings used to process the autoradiography image. 

Setting options Value 

PMT 626 Volts 

Pixel Size 25 microns 

Laser Wavelength 650 nm 
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autoradiograph for the fifty samples numbered as indicated in the Sample Preparation 

section presented earlier in this work. 

 

3.3. Scanning Electron Microscopy 

 For this research, LLNL provided the FEI Inspect Model F SEM and detector.  To 

prevent static charge build up, a nominal 10 nm conductive carbon coating was sputtered 

on the surface of the samples.  Carbon was chosen to reduce interference with the 

elements of interest within the sample.  The sputtering was completed using standard 

procedures for SEM imaging sample preparation.  The settings for the data collection 

using the SEM are shown in Table 2. 

The BSED images of the samples serve as an additional method for feature 

matching during the EDS and XRF compositional analysis.  By adjusting the contrast, it 

is possible to determine degree of homogeneity of the sample due to the different 

 

Figure 12. Shown left, autoradiography of the 50 samples used for this study.  Shown on the right 
is a 3-D plot of the intensity of sample 47 taken from the autoradiography data. 
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energies of the backscattered electrons.  The apparent homogeneity or heterogeneity is 

used as a rough classification of the particles into two different categories for analysis. 

 To complete a detailed characteristic x-ray mapping of each sample with the SEM 

requires months of machine time.  To build up the counts of minor elements to detectable 

levels at a high resolution requires four days per sample [24].  The additional mapping is 

scheduled to be completed by LLNL over the rest of the fiscal year.  As an example, the 

completed raster scan of sample 47 is shown in Figure 13 where brighter pixels in the 

image correspond to higher elemental concentrations.  This sample was chosen based on 

its apparent homogeneity in the BSED image and unique radiation signature captured in 

the autoradiography shown in Figure 12.   

Table 2. Settings used for the Inspect FEI SEM. 

 Acceleration 

voltage (KeV) 

Spot Size 

setting 

Live Time (s) Resolution 

(pixels) 

BSED 15 5   

EDS 15 5 15  

Raster 15 5  1600×1600 
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Figure 13. SEM results for sample 47.  The top left image shows the secondary electron image for 
the sample.  The remaining three images show the EDS characteristic x-ray mapping for the 
specific elements of Si, Al, and Ca in sample 47. 
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A spot analysis was completed using the energy dispersive spectroscopy (EDS).  

Using a spot analysis ensures that the bulk characteristics of the samples are captured.  

Additionally, spot sampling provides a rapid method of characterization for each sample.  

Each sample was scanned using a uniform grid as shown in Figure 14.  This grid provides 

a uniform density of points for each sample.   

The settings for the Inspect SEM for the EDS measurements stayed the same as 

for the BSED with the addition of a 15 second live time per data point.  On average, each 

sample will have 35-50 data points before any filtering to remove invalid data points.  

 
Figure 14. Grid used for EDS spot analysis of sample 47.  Sample points that fall off the sample or 
indicate voids and surface defects are indicated with the blue arrows.   
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These invalid points can be due to voids or cracks in the surface or sample spots near the 

sample edge, points of this type are shown with blue arrows in Figure 14.   

3.4. X-ray Florescence 

X-ray florescence provides complementary information to the EDS characteristic x-

ray spectrums collected with the SEM.  While both provide a similar method to 

determine the elemental composition each has its own advantages and can be more 

suitable for different elements [20].  The micro-XRF data collection is scheduled to be 

completed at AFIT using the Horiba XGT 7200 after the completion of the x-ray 

mapping with the LLNL SEM.  Each sample will be raster scanned and spot scanned to 

provide a similar data set as already discussed in the SEM set up.  The recommended 

settings for the Horiba XGT are recorded in Table 3.  These settings will take advantage 

of the machines calibration settings and maintain consistency with the SEM data. 

 

  

Table 3. Recommended settings for the Horiba XGT micro-XRF. 

Acceleration 

Voltage (KeV) 

Spot Size 

(microns) 

Live time (s) Raster resolution 

15 100 15 512x512 
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3.5. Principal Component Analysis 

 Principal components are mathematical constructs that solve the eigenvector 

problem by assigning weighting factors to the original variables.  The summation of the 

weighting factors and original variables make up the linear combination.  To ensure that 

only valid data points are used the EDS data must be evaluated.  As stated earlier any 

surface irregularities will affect the returning energy of the electrons and thus enter 

additional errors into the system.  Data points that fall within this category are removed 

from the data set.   

The remaining spectroscopy data was further reduced by removing any data point 

that had a sum peak total less than 90% or greater than 110%.  For the SEM, the sum 

peak total is the resulting fit from the collected EDS spectrum using the Inspect software.  

There are several reasons that the sum peak may depart outside of this range.  Any 

surface defects, data point off the sample, or surface voids and cracks will affect the 

resultant energy spectrum and the sum peak totals [18].  To ensure a valid model of the 

elemental concentrations these data points need to be removed.  This constitutes the 

preconditioning that must be completed for any data set prior to obtaining a mathematical 

solution.   

 Before establishing the covariance matrix several steps must be completed to 

ensure that the true data variance is represented by the PCA model.  To remove the 

dependence on large values the data is first mean centered.  Mean centering subtracts the 

mean off each column in the data set [23].  The second step is to remove any unit change 

between the variables.  This is done by dividing the mean centered variable by the 

standard deviation.  This removes any unit dependence.  Using EigenVector’s PLS 
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toolbox these two steps are accomplished under the auto scaling function [23].  By using 

these two steps the data is a true representation of the variance between each data point 

and not arbitrarily inflated by large numerical values from one sample.  Once auto-scaled, 

the solution to the covariance matrix was determined using PLS Toolbox.  This program 

was developed specifically for chemometrics or the study of chemical systems in 

biochemistry and chemical engineering [23].  This software is well-suited to meet the 

goal of identifying the chemical elements that are most closely correlated to the 

autoradiography data.  It should be noted that PCA is not the only possible multivariate 

statistical method that can be employed by the PLS toolbox but will serve as the basis to 

identify and refine the model of early incorporation of nuclear fuel in the fallout particles. 

The resulting solution must be evaluated to determine the suitable number of 

principal components needed to develop a valid model of the elemental compositions of 

the samples.  This is accomplished using the Scree test, Kaiser’s rule, and the proportion 

of variance captured theorem.  The use of these evaluation methods is discussed in 

Chapter IV.4.3. 
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IV. Results 

Principal component analysis was completed on the elemental composition data 

obtained through the X-Ray Energy Dispersive Spectroscopy spot sample data collection.  

By solving the covariance matrix with the data obtained from the spot sample, a model 

was developed to describe the chemical variations within the bulk sample set.  With the 

principal components, it is possible to evaluate unknown data with the known data.  This 

provides a predictive capability in characterizing new samples without undergoing the 

same evaluations as the sample set.  By plotting the original data points in principal 

component space, the model co-locates samples that exhibit similar physical 

characteristics.  Additionally, several samples are compositionally similar but did not 

share the same physical traits such as color, texture, or homogeneity.  This difference in 

physical characteristics could cause mischaracterization of samples’ forensics value.  

This highlights a strength of using PCA to group samples based upon similar chemical 

compositions, instead of physical traits that may have no correlation to actinides.  The 

resulting principal component model provides a method to identify and characterize those 

samples that have compositional similarities identified as positive correlation to actinide 

incorporation.   

Specifically, this research has confirmed the importance of calcium in actinide 

incorporation.  Of note was the strong correlation between the presence of aluminum and 

the unspent nuclear fuel not identified in previous studies.  Additionally, the model 

identified an anti-correlation between unspent nuclear fuel and iron, sodium, potassium, 

and silica.  As the full characteristic x-ray mapping information is completed, the 
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correlations, anti-correlations, weighting of importance and percent concentration can be 

identified. 

Identifying which elements and concentrations are correlated with unspent nuclear 

fuel will improve the forensics collection and analysis of post-detonation nuclear fallout 

materials.  Furthermore, this will improve fallout development models through additional 

constraints and boundary conditions.  Understanding the fundamental elements and 

concentrations helps researchers to develop the compositions formed during the toroidal 

mixing of the nuclear event.  These compositions have definitive physical and chemical 

characteristics that must be understood if improvement to the fallout models are to be 

developed.  Understanding the physical and chemical properties of these actinide 

incorporating compositions will help to further the understanding of the mobility of the 

unspent nuclear fuel improving safety and long term environmental impacts from 

historical tests and future research.   
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4.1. Optical Microscopy 

 Optical microscopy was completed using a Leica M165 optical microscope with a 

Leica DFC 425 digital camera mount.  The main purpose of the optical microscopy was 

to evaluate the macroscopic variations in the fallout samples.  The sample set contained a 

large variation in color, clarity, and porosity.  Additionally, optical microscopy provides a 

second method of identifying surface defects that would affect the accuracy of the SEM 

data.  Recall, that surface defects affect the accuracy of the EDS data.  These defects pose 

a significant error in elemental spectroscopy identification.  Performing optical 

spectroscopy provided a means of grouping the fallout based on physical characteristics 

such as color, swirls and inclusions.  These physical characteristics provide a quick and 

inexpensive method to characterize samples.  In the early days after an event, the decay 

from fission fragments will saturate most spectroscopy tools.  Detectors that rely on x-

rays or electrons to provide characterization data, such as those used in this study, will be 

saturated by the radiation activity.  The high activity will also saturate autoradiography 

films preventing the use of this characterization method.  Using the PCA model provides 

a valuable tool for rapidly sorting of high forensic value fallout material through 

correlations to physical traits.   

The optical spectroscopy images were taken using a 16.5X1 zoom set at 10x.  

Each image was captured at 5-megapixel resolution and observations recorded for each 

sample.  The resulting images are listed in sample number order from left to right in 

Figure 15, Figure 16, and Figure 17. 
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Figure 15. Optical Spectroscopy of samples 1 to 12 numbered from left to right. 
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Figure 16. Optical Spectroscopy of samples 13 to 32 numbered from left to right. 
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Figure 17. Optical Spectroscopy of samples 33 to 50 numbered from left to right. 
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 The optical spectroscopy revealed a wide range of physical characteristics for the 

fallout samples including a range of colors from clear to dark brown.  Melt characteristics 

include features such as partial melt inclusions, vortex swirls, bubbles or voids, and 

optical clarity.  Based on previous studies of fallout samples, these features indicate that 

this sample set includes many of the expected fallout types from a near surface weapon 

detonation [11] [3] [6] [10] [12].  With this wide fallout sample range, the validity of the 

resulting model is further supported and provides a useful model for classification of 

fallout samples from historic weapons tests. 

4.2. Autoradiography 

 Due to the time since the event, it is assumed that only the actinide fuel is left to 

produce radiation, thus the direct exposure on the image plate is due to the spontaneous 

decay of the unspent nuclear fuel [3] [12].  As such the autoradiography provides the 

spatial location of the actinides along with the relative activity within each fallout 

particle.  As alpha particles have a short mean free path and deposit energy locally these 

energy depositions will record the location of the activity on the image plate within each 

particle.  With direct contact between the film and the particles no magnification of the 

fallout particles occurs during the exposure.  The intensity of exposure is directly related 

to the amount of unspent nuclear fuel in the sample.  An initial exposure time was 

estimated based on the average activity of the fallout samples prior to the mounting and 

grinding process.  An initial exposure time of 18 hours was used to prevent overexposure.  

This was adequate to provide enough exposure to image the particles without saturation.  

A digital processing method provided a secondary control measure to ensure proper 
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exposure without pixel saturation.  The resulting raw data was processed using National 

Institute of Mental Health’s program, ImageJ [25]. 

 When viewing the autoradiography image, areas of higher actinide activity and 

concentration appear as darker pixels as shown in Figure 18.  From nuclear physics, we 

know that alpha particles from a nuclear decay are born monoenergetic and result in 

sharp local energy deposition [11].  This local deposition will cause a local exposure in 

the image plate producing clear images.  Similarly, beta particles from nuclear decay 

processes have a spectrum of energies and linear energy deposition as they move through 

a material.  This linear deposition spreads the energy across regions which blurs the 

image [3].  Based on the total intensity recorded for a particle, it is possible to determine 

the relative activity within a sample.  To a limited degree, the resolution of the image can 

indicate the type of energy that was deposited in the film plate as indicated by the energy 

deposition of the types of particles causing the exposure. 
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 With ImageJ, it is possible to investigate each sample and produce a multitude of 

surface plots, scaling, transformation and other image processing options to build an 

anecdotal understanding of each fallout sample.  Comparison of physical characteristics 

and autoradiography images can provide some information about each sample to help 

understand the fallout bulk characteristics.  Several of the fallout samples registered 

minimal or no discernable activity on the image plate.  Since the image plate is recording 

alpha and beta energy deposition these samples likely had surface activity that has been 

 
Figure 18. Autoradiography of all 50 samples numbered from left to right.  Exposure to radiation 
results in exposure on the imaging film.  Higher radioactivity in a sample results in a darker image. 
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removed by the preparation process or is enclosed in the epoxy.  With the short mean free 

path of alpha particles, any surface radiation would be encased within the epoxy and 

unable to deposit energy on the film [11].   

4.3. EDS Spot Sample Model 

 The fifty samples were analyzed using the EDS function on the Inspect F SEM at 

LLNL using the settings recorded in Table 2.  The highest resolution that would keep all 

samples in the field of view during the spot sampling was selected. A uniform 10 × 10 

grid and magnification ensured an even density per volume of sample points for each 

sample, reducing any bias on the model from larger samples.  With a uniform grid, it is 

inevitable that some grid points did not fall on the sample but on epoxy, cracks, or 

vesicles.  These data points provide no elemental spectroscopy of the fallout samples and 

could potentially affect the resulting model.  After removing these grid points a total of 

1948 data points were collected to form the basis data set for the elemental model.   

 The resulting model produces a new mathematical construct that can be used to 

investigate the covariance between the elements of interest.  The most important 

validation of the model is based on Kaiser’s rule, the Scree Test, and portion of variance 

explained.  These methods are used to identify the statistically important number of 

principal components.  To capture 100% of the variance requires a total of eight 

eigenvalues.  Every measurement has some level of uncertainty and noise.  Using every 

principal component ensures that the model represents the data points but also the 

uncertainty and noise.  The statistical noise, variations in machine error and fitting 

routines are not statistically important, nor do these variations represent the fallout 
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properties and should be removed.  Using PCA it is easy to identify these variations due 

to machine and fitting error.  The Scree test identifies inflection points as a method of 

determining the statistical significant of an eigenvector’s importance to the solution of a 

problem [26].  An inflection point is one that can be described as a knee or bend in the 

trend line of the eigenvalues when plotted against the principal component number.  

These inflection points within the eigenvalues are shown in Figure 19.  The inflection 

points occur at PC’s 2, 3, 5 and 7.  By this test one, three, five, or seven PC’s are required 

to describe the system. 

 

 To identify the correct number of statistical PC’s, Kaiser’s rule was also applied.  

Kaiser’s rule states that the statistically important eigenvalues will be greater than one.  

Eigenvalues that are greater than or equal to one contain at least as much information as a 

 
Figure 19. Initial eigenvalues for the resulting model as calculated from the EDS spot data. 
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single variable from the system [26].  By looking at the eigenvalues in Figure 19, 

Kaiser’s rule indicates that two principal components may be required to describe the 

system as the third eigenvalue is 0.987.  However, this describes only approximately 60% 

of the variance in the system leaving nearly 40% unexplained, which by the proportion of 

variance captured theorem produces an unsatisfying model.  This last theorem states that 

a good analysis will capture at least two-thirds of the variance in the system [26].  Using 

three principal components 78% of the systems variance was captured by the model as 

shown in Figure 20.  

 

To satisfy all three validations, the fallout model should have three principal 

components.  As expected, each additional eigenvalue added to the model captures less 

variation.  Using PLS Toolbox the final validation of the model is completed 

 
Figure 20. Initial percent variance captured per principal component number as calculated from 
the EDS spot sample data. 
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automatically.  PLS toolbox removes one variable at a time to ensure the eigenvectors 

represent the most important variations in the system while solving the system of 

equations returning the best fit from the multiple solutions.  This final check ensures that 

the first eigenvalue is the most statistically important to explaining the model.   

With three principal components, the model identified one key feature.  This 

feature is the number of compositions in the system.  Since the principal components 

form an orthonormal basis there must be n+1 compositions.  With these three principal 

components, the data set has four main elemental compositions.  This conclusion agrees 

with the research performed by Holliday [12].   

 After validating the sufficient number of principal components, the powerful tool 

of PCA is now available.  Recalculating each data point’s elemental concentration with 

the principal component weighting factors reframes each data point as a new value.  The 

resulting value is known as a score for that data point in the new reference frame of the 

principal components.  The scores from one principal component can be plotted against 

the scores from another principal component much like a traditional Cartesian x-y 

coordinate system.  It must be stressed that these principal components are a 

mathematical construct representing the chemical variations observed in the fallout 

samples.  These scores for the 50 samples and 1948 data points are shown in Figure 21 

plotted with PC 1 on the x-axis and PC 2 on the y-axis.   
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 By plotting these scores one sample is identified as a possible concern.  The 

scores for sample three (green stars, bottom left quadrant) indicate a strong negative 

correlation to PC 2 due to the negative scores along the y-axis.  However, this linear skew 

could also indicate some analytical  problem with that sample.  Upon investigation, this 

quadrant and direction on PC 1 vs PC 2 scores is due to magnesium as shown in Figure 

22.  Investigation of the raw data for this sample shows that the magnesium standard 

 
Figure 21. Scores for EDS spot sample data bi-plot for PC 1 vs PC 2.  The bi-plot represents the 
samples data points in PC space.  Sample points with similar chemical variations will be plotted 
in the same region.  Sample points with little variation will be closely plotted in PC space.  A 
scattering of data points from a sample indicate regions of wide chemical variation in that 
sample. 
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deviation was five times higher than the standard deviation for any other element in the 

sample.  The standard deviation for this sample was twice as high as any other samples in 

this region of PC space.   

 

 Using PCA identified a potential problem in the data set otherwise not observed 

and allowed identification and analysis of this problematic sample.  A visual inspection 

of sample three under high BSED magnification identified a crystalline or porous surface 

structure.  These surface defects could have been responsible for errors in the spectrum or 

indicate dissolution, or damage during the grinding process leaving a rough surface.  This 

analysis suggests that sample three should be removed from the model. 

 
Figure 22. Initial elemental scores for PC 1 vs PC 2.  
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Initially, carbon was expected to be zero and was included in the model to verify 

that no interference from the carbon coating preparation was being forced into the model.  

Since carbon was always found at the origin of the scores plots, this assumption was 

proven to be true allowing that element to be removed from the model.  Oxygen often has 

a high variance when conducting EDS.  As every element is assumed to be an oxide, 

oxygen can be removed from the model for elemental variance without loss of integrity in 

the model while improving the models ability to identify variance in minor elements that 

may be overshadowed by the higher variability of oxygen.   

 Removing the data points from sample three and removing the variables of 

oxygen and carbon produced a slight change to the overall model.  The same number of 

principal components were identified for the final model using the same criteria as 

before.  As shown in Figure 23, the eigenvalues for this system are 3.7, 1.5 and 1.17 

satisfying the Scree test (inflection points) and Kaiser’s rule (greater than one eigenvalue) 

as explained previously.  
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The increase in principal component three’s eigenvalue supports the decision to 

remove sample three due to the large variance in the magnesium.  These three 

eigenvalues describe 79.66% of the variance in the EDS spectrum data, as shown in 

Figure 24, supporting the proportion of variance captured theorem.  As in Figure 21, the 

scores for the data points are plotted to identify any trends or possible problematic data 

points or samples.  When looking at the scores plots it is customary to plot PC 1 vs PC 2 

(Figure 25) and PC 1 vs PC 3 (Figure 26).  In these bi-plots each sample is a different 

symbol allowing visual representation of the variations within a sample and within the 

entire data set.  Plotting PC 2 vs PC 3 does not provide any additional insights into the 

system, the variance is already captured by using PC 1 versus the other two.   

 
Figure 23. Eigenvalues for each principal component for the final PCA model based on the EDS 
spot sample. 
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Figure 24. Cumulative percent variance captured by each principal component. 
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Figure 25. EDS spot sample scores for PC 1 vs PC 2.  The dashed ellipse represents the 95% 
confidence interval for the generated solution and resulting scores. 



56 

 

 The scores do not provide a full description of the system.  Additional information 

is provided by the element vectors for each principal component.  These vectors describe 

how the variance in each element causes the scores to shift along each axis.  For example, 

when viewing the element vectors for PC 1 vs PC 2, in Figure 27, a sample that has a 

 
Figure 26. EDS spot sample scores for PC 1 vs PC 3.  The dashed ellipse represents the 95% 
confidence interval for the generated solution and resulting scores. 
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higher concentration of aluminum or titanium will be found in the top left quadrant.  

 

This also indicates a strong positive correlation in PC 2 for those elements and a 

negative correlation in PC 1.  Both of these facts are developed by looking at the scores 

for the individual elements as plotted in Figure 27.  These correlations developed from 

the scores will be key to understanding how the actinides are incorporated into the fallout 

particles and the major elemental compositions.  Visible correlations are possible by 

 
Figure 27. Element vectors for PC 1 vs PC 2 indicating the weighting factors and correlations for 
the elements in the model. 
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viewing the average intensity of the autoradiography for a given sample and its location 

on the bi-plot in Figure 25 and Figure 26.  Once a quadrant and vector is established for 

the samples average score correlations can be made about the major elements and the 

nuclear fuel.  A benefit of the multiple principal components and plotting different 

configurations is apparent when viewing PC 1 vs PC 3 in Figure 28 resulting in the vector 

separation of aluminum and titanium.  This separation can provide the key to 

understanding the various element’s affinity to the actinides during fallout formation.   

 From the PCA model the final elemental weighting factors for each of the three 

principal components can be recorded.  These weighting factors are the values from the 

solution assigned to each eigenvector while solving the covariance matrix.  Each value is 

recorded in Table 4. 

 

 

Table 4. Principal component elemental weighting factors for the EDS spot sample model. 

 Na Mg Al Si K Ca Ti Fe 

PC 1 0.4221 -0.1378 -0.2462 0.4736 0.4364 -0.4455 -0.2347 0.2718 

PC 2 0.2045 -0.2877 0.6490 -0.0488 0.1678 -0.2425 0.6009 0.0616 

PC 3 -0.1193 0.6761 -0.0733 -0.0286 -0.0822 -0.1903 0.3246 0.6117 
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 Each of the samples was further classified as homogenous or heterogeneous using 

the BSED catalog of the samples.  A class of “porous” was added to the traditional 

homogenous and heterogeneous classification to identify the samples that exhibited the 

porous surface defects.  Pull out is used to describe a surface that has been marred during 

the polishing process.  Given that all of these samples have similar physical 

characteristics, pull out could be due to the composition’s reaction to the preparation to a 

hemisphere or the natural structure of these samples due to another factor not examined.  

A high magnification of sample 34 is shown in Figure 29 to highlight the porous 

structures.   

 
Figure 28. Element vectors for PC 1 vs PC 3 indicating the weighting factors and correlations for 
the elements in the model. 



60 

 

All of the porous class samples appears to have the same characteristics under 

optical, BSED and EDS imaging.  This classification system can be used to provide some 

insight as to the elements that are predominate in each of the categories. Additionally, it 

can help to reduce the amount of information that is presented in a bi-plot allowing 

analysis of bulk properties that would otherwise be hidden among the individual sample 

characteristics.  A representative sample for each of the three classes is shown in Figure 

30.     

 
Figure 29. High resolution BSED of sample 34 edge highlighting the porous surface features. 
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Figure 30. Representative samples of the three classes homogenous, heterogeneous, and porous. 

 
Figure 31. Sub-categorized bi-plot for PC 1 vs PC 2 showing the grouping of homogenous, 
heterogeneous, and porous samples. 
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The bi-plot of the sub categorized samples is shown in Figure 31.  With this 

categorization, it is easy to identify the similarity of the porous samples is due to a 

specific elemental variance.  This variance caused the scores for these samples to be 

plotted in the bottom left quadrant with a definite trend shown as the red triangles in 

Figure 31.  The nearly vertical distribution indicates that this is due to magnesium in the 

samples verified by Figure 27 and raw EDS spot data.  Clearly, the scores are dominated 

by a variance in magnesium for these samples.  A visual inspection in Figure 32 of the 

autoradiography for this class shows a non-uniform distribution of activity through the 

sample and of a medium intensity compared to other samples.  This grouping included 

samples 3, 9, 18, 27, and 34, with sample 3 removed from the model and not shown.   

 It is also easy to identify a homogenous group in the top left quadrant of the bi-

 

    
Figure 32. Autoradiography, EDS and optical images of the sub-classification of porous surfaces 
containing samples 9, 18, 27, and 34. 
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plot in Figure 31.  This group consists of samples 12, 22, 44, and 48.  This grouping is 

interesting as it contains a homogenous group of samples of similar physical 

characteristics.  This grouping contained all of the clear samples and those of the highest 

uniform autoradiography intensity.  This indicates a high percentage of actinide in the 

fallout sample that has been uniformly distributed throughout the volume, making this 

group the highest forensic value group to recover unspent fuel.  From Figure 27 this is 

due to a correlation to aluminum or titanium.  From Figure 26 it is apparent that the 

correlation is due to the aluminum and not the titanium as the scores change quadrants 

matching the change in aluminums scores from Figure 28 and Table 4.   

 

 The mixed grouping in Figure 31 consists of homogenous samples with surface 

defects, cracks or visible swirls and heterogeneous samples.  The heterogeneous samples 

contained inclusions, indicators of partial melt, voids, bubbles, and other unique physical 

features.  A common elemental feature of this group was silica, sodium, and potassium 

with a general non-uniform activity distribution.  For high value forensics, this grouping 

 

 

 
Figure 33. Autoradiography, BSED and Optical images for samples 12, 14, 22, 24, 44, and 48. 
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represents a mixed result and should be a secondary choice over the clear homogenous 

group or the porous group.  Based on these findings the anecdotal results suggest that the 

samples with low silica, potassium, sodium, and iron are more likely to contain unspent 

fuel.  To improve this from an anecdotal to a quantitative finding, the spot sample model 

will be used to describe individual samples and serve as the basis for the characteristic x-

ray mapping model.   

4.4. Characteristic X-ray Mapping 

 Currently full characteristic x-ray mapping of samples 2, 13, 28, and 47 have been 

completed using a 1600 x 1600 pixel resolution.  These scans were accomplished at 

LLNL using the SEM over the course of four days each.  The length of time is necessary 

to build up enough counts of the minor elements in each pixel for the selected resolution.  

As the scan is completed, images are developed for each of the elements with higher 

concentrations of each element producing a brighter pixel which can be seen in the 

calcium and silica images from sample 47, shown in Figure 34.  For each of the four 

fallout samples an image was developed for calcium, aluminum, carbon, iron, potassium, 

magnesium, sodium, oxygen, silica, and titanium.  These images are then aligned and 

saved into a new image matrix that is 1600 × 1600 × 10.  The matrix then contains the 

information for each element at each pixel.  This matrix now serves as the complete 

elemental composition for each sample.   
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 The autoradiography image for each sample is approximately 40×40 pixels.  This 

low-resolution image must be matched to the high-resolution raster map.  This highlights 

the significant problem with the resolution of the SEM and the autoradiography image.  

Because of the disparity between the SEM and the autoradiography resolution, it was 

impossible to incorporate the autoradiography data into the spot data for a quantitative 

analysis.  Using a full raster image with image processing software and scaling it is 

possible to match up the autoradiography data with the raster elemental data.  PLS 

Toolbox incorporates an image analysis suite that can scale and pixel match between 

images of different resolutions.  To improve computational time each of the raster images 

were scaled to 640×640 and then loaded into PLS Toolbox to map and align the raster 

images to the autoradiography.  This produces a 640×640×11 matrix where the intensity 

of each element and the autoradiography intensity are recorded for each entry.  Prior to 

running a PCA model or mapping the principal components from the spot data model, the 

epoxy and surface defects must be removed.  Surface defects are identified using the 

 
Figure 34. Calcium and silica raster scan image for sample 47. 
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BSED, EDS, optical and SEM images.  Removal requires identification of each pixel and 

suppressing or removing it in the master matrix.  This is accomplished using the image 

processing suite within PLS Toolbox, shown in Figure 35.  As each pixel is removed the 

data begins to represent the actual sample and not erroneous data points.  These removed 

data points appear as black pixels in the image analysis suite providing a positive method 

of matching surface defects and data entries in the matrix.   

 

 
Figure 35. Sample 47 full raster scan with removed surface defects and epoxy (top left image).  
Individual pixel scores for PC 1 vs PC 3 (top right), PC 3 vs PC 2 (bottom left) an PC 1 vs PC 2 
(bottom right). 
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 The top left image in Figure 35 shows the full data set as an image where each 

pixel stores the elemental information.  The pixels that are included are plotted in the 

three remaining scores plots.  Within the image each included pixel is colored based on 

the PC scores using RGB theory while those removed from the matrix are black.  When 

pixels are removed from the data set the image is re-processed as an individual PCA 

model.  By processing each sample as an individual model each time data is removed  the 

validity of each pixel in representing the sample is verified along with assisting in the 

removal of further surface defects.  In the image set shown in Figure 35 pixels from 

surface defects will have scores significantly different from other pixels causing them to 

be on the extreme edges of the scores bi-plots and oddly colored, compared to 

neighboring pixels, in the data image.  This process was repeated for the other three raster 

samples.  The individual PCA model for the four images were used to verify surface 

defects were removed.  No further information was derived from the image pre-

processing analysis.  With the raster data pre-processing complete several options exist.  

The data can be used to form a new model, like the spot data, evaluated using the spot 

data model, or evaluated as its own data set.  Evaluating as its own data set allows 

identification of areas that are statistically different from the rest of the sample.  This is 

important if we are trying to understand why the actinide is in one region in a particular 

sample but not distributed throughout the sample.  If the fallout particle is not one particle 

but made up of several fallout particles coalesced together, a conglomerate, it can have a 

significant effect on the resulting model if viewed as one sample.  The variation of this 

conglomerate sample does not represent a true fallout sample and has different 
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mechanisms that govern its development as a conglomerate particle and not individual 

particles. 

Evaluating the Raster Data with the Spot Model 

 By using the principal components that describe the entire data set it is possible to 

describe each sample by its variations compared to the entire sample set.  This 

comparison will be extended to the unspent nuclear fuel to identifying which elements 

are correlated with the actinides.  After data pre-processing, the x-ray map is projected 

through the spot data model.  This projection assumes the eigenvalues from the PCA 

model are the solutions for the raster data.  Application of these eigenvalues to the data 

set allows direct comparison of each sample against the aggregate 50 sample data set.  

Each of the three principal components is assigned one of the three primary colors from 

red, green, and blue (RGB).  Then, every possible color combination is possible by 

adding the various wavelengths together via RGB color theory [27].  Each of the RGB 

colors has a value from 0 to 255.  A sample that can be represented entirely by one of the 

principal components would have a single color, as shown in Figure 36.  For instance, if 

principal component one was designated as red and represented the fallout sample 

completely, it would have a value of 255, 0, 0.  This basic representation is well suited 

for the elemental models represented by three principal components.   
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 The four samples come from two distinct regions of the spot data model.  Samples 

2, 13, and 47 exhibit a positive correlation to PC 1 easily identified by the positive axis 

location in the bi-plot.  The tight clustering in Figure 37 indicates that the elemental 

vectors are equal in weight, while sample 28 has a negative correlation to PC 1 but 

maintains the equal influence from the elemental vectors.  With all the data points from 

these four samples clustered around the axis there is positive and negative correlation in 

PC 2 for these samples indicating that the variations captured by PC 2 are not strongly 

reflected in these samples.  Figure 38 shows the scores for PC 1 vs PC 3. 

 
Figure 36. RGB color wheel, used with permission [30]. 
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Figure 37. Spot data scores plotted for samples 2, 13, 28, and 47, PC1 vs PC2.  The close grouping 
of the data points indicate that these samples exhibit little variation.  Samples 2, 13, and 47 
exhibit similar variations as evident in the grouping of the sample points on the bi-plot. 
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When all three principal components are used to color the four samples the 

resulting image gives us a three-dimensional representation using RGB color theory.  

These images combine the full raster data set with the elemental spot data for the entire 

fallout sample set.  When investigating sample 28, in Figure 41, it is apparent that the 

middle of the sample is an even distribution of all three principal components [27].  

Meanwhile, the outer rim is comprised primarily of PC 1 and PC 3.  Using the individual 

coloring images for the PC’s in Figure 41 it can be shown that a positive contribution to 

PC 1 and negative from PC 3 causes this pinkish rim region.  Which corresponds to the 

silica, potassium, and sodium in the samples rim as identified by the elemental vectors 

shown in Figure 28. 

 
Figure 38. Spot data scores plotted for samples 2, 13, 28, and 47, PC1 vs PC3.  Grouping of data 
points indicate that these samples exhibit little variation across the sample.  The negative PC 1 
position of sample 28 shows an anti-correlation to variations of the other three samples. 
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Figure 39. Sample 2 raster data projected through EDS spot model using all three principal 
components colored by RGB color theory (top).  Sample 2 raster data when represented by PC 1 
(bottom left) to PC 3 (bottom right) where scores range from dark blue (negative) to yellow 
(positive). 
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Figure 40. Sample 13 raster data projected through EDS spot model using all three principal 
components colored by RGB color theory (top).  Sample 13 raster data when represented by PC 1 
(bottom left) to PC 3 (bottom right) where scores range from dark blue (negative) to yellow 
(positive). 
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Figure 41. Sample 28 raster data projected through EDS spot model using all three principal 
components colored by RGB color theory (top).  Sample 28 raster data when represented by PC 1 
(bottom left) to PC 3 (bottom right) where scores range from dark blue (negative) to yellow 
(positive). 
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Figure 42. Sample 47 raster data projected through EDS spot model using all three principal 
components colored by RGB color theory (top).  Sample 47 raster data when represented by PC 1 
(bottom left) to PC 3 (bottom right) where scores range from dark blue (negative) to yellow 
(positive). 
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 By projecting each of these x-ray maps through the EDS spot sample model, it 

becomes apparent that several of the particles exhibit mixing behaviors such as those 

seen in the PC 3 coloring of sample 47 shown in Figure 42.  The PC 2 representation in 

the RGB image corresponds to a peak activity region.  However, there is a second peak in 

this sample that is not represented by PC 2.  This highlights a limitation of the spot data 

in determining the exact element correlation to the unspent nuclear fuel.  Using just the 

EDS spot sample data is limited to anecdotal correlations due to the low concentration of 

actinides in the sample and the unavailable activity data in this model.  This sample also 

shows inclusion characteristics of silicon dioxide in the PC 1 coloring.  These regions are 

easily identified on the optical image and help to establish the positive correlation to 

silicon dioxide and PC 1, which further confirms the validity of the EDS spot sample 

model.  The resulting individual element weighting factors for the EDS spot sample 

model for each of the principal components are shown Appendix A, Figure 51, Figure 52, 

and Figure 53.   

 Sample 2 highlights the ease of identifying fallout samples that have been formed 

of multiple samples or conglomerates.  The optical image of this sample suggests that it 

may have been developed from two samples combined during the cooling phase of 

formation, but is not definitive.  However, the EDS PCA model clearly shows that the 

upper portion of the sample has a different chemical composition from the rest of the 

sample.  Figure 39 shows how the majority of the sample is composed of a different PC 

mixture than the top portion of the fallout sample.   
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Raster Elemental Model with Autoradiography 

 Using the four sample’s x-ray maps a consolidated data set was constructed.  This 

data set improves upon the EDS spot sample with the inclusion of the autoradiography 

activity data.  The process for the PCA model follows the same principal and steps as the 

EDS model.  The resulting model showed the same characteristics indicative of a two 

Principal Component model.  These first three principal components had values of 4.73, 

1.35, and 0.939, as shown in Figure 43.

 

By the Scree test, Kaisers Rule, and the proportion of variance captured theorem 

it is possible to reduce the number of principal components to just two, compared to the 

three used for the EDS spot model.  However, with such a limited number of samples in 

the model this raises a concern.  Additionally, all of these samples came from regions in 

 
Figure 43. Raster Elemental Model Principal Component values. 
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close proximity in the EDS spot model, meaning that the scores of these samples are 

similar and have similar elemental compositions.  Using the first three principal 

components captures 78.06% of the variance of the system.  For consistency, and to 

account for the small sample size and similar scores, the model will be developed using 

the first three principal components.  Recall that additional PCs begin to capture 

statistical noise and measurement error further reducing the value added through 

additional PCs when developing a mathematical model to explain the variations within 

the system.  The principal components percent variance captured is recorded in Figure 

44. 

 

 Based on the limited number of samples in the model, the results from such an 

analysis must be taken with caution and are not necessarily representative of the 50-

sample set.  The results do, however, provide valuable insight into the methods proposed 

 
Figure 44. Raster Elemental Model Principal Component percent variance captured. 
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in this paper and validate the methods used for future research in this area.  The first thing 

to consider is element vectors for the principal component mapping.  When viewing PC 1 

vs PC 2 (Figure 45) a few differences are noted compared to the EDS spot data model, 

Figure 27.  The addition of the autoradiography data, denoted as AR, caused aluminum 

and titanium to become separated in the first two principal components.  A division that 

was not available until the first and third analysis, Figure 28.  However, the association 

between sodium, potassium, and silica is maintained along with the anti-correlation to the 

calcium and magnesium grouping.  This correlation between aluminum and the unspent 

nuclear fuel is accounted for in 67% of the data set’s variance.   

 

 
Figure 45. Raster elemental model, PC 1 vs PC 2 element vectors.  The model indicates a 
correlation between the activity of the unspent nuclear fuel and aluminum along with an anti-
correlation to sodium. 
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 When comparing, the element grouping for PC 1 vs PC 3, see Figure 46, the 

correlations and anti-correlations remain for the two main groups from PC 1 vs PC 2.  

Titanium and iron become anti-correlated which is a new data point from the analysis of 

the raster data.  The close grouping of calcium and the autoradiography in PC 1 vs PC 3 

is due to the small value in PC 3.  Looking at Figure 45 it is apparent that the calcium and 

autoradiography have nearly the same value in PC 1 and that it is PC 2 and PC 3 that 

cause the vertical separation or lack of it.  This correlation identifies the co-location of 

actinides with calcium, magnesium, and aluminum, at least within these four samples.  

The values of these three principal components are recorded in Table 5. 

 

 
Figure 46. Raster elemental model, PC 1 vs PC 3 element vectors.  The model indicates that the 
unspent nuclear fuel, aluminum, and calcium represent a positive correlation while sodium is 
anti-correlated to the nuclear fuel. 
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Since the data loaded for this model comes from images, the resulting scores look 

much like the ones from before with the RGB color scheme, rather than the scatter plot 

seen in the EDS spot sample.  Instead of being predictive of how the model is represented 

in the samples like earlier, these RGB images show how the sample affected the final 

PCs.  With this understanding it is expected that three samples, 2, 13, and 47, will have 

similar RGB coloring images.  This assumption is based on the EDS spot sample model 

and the co-location of these samples, as seen in Figure 37.  The co-location is due to 

similar scores resulting in the data points being plotted near one another in PC space.  

With the higher sampling rate, it is expected to also expose new features in these 

samples.   

Table 5. Principal component scores for the raster model developed with samples 2, 13, 28, and 47. 

 AR Al Ca Fe K Mg Na Si Ti 

PC 1 0.363 0.344 0.377 -0.037 -0.404 0.402 -0.362 -0.382 0.718 

PC 2 -0.288 -0.354 0.222 0.740 -0.139 0.131 0.082 -0.172 0.349 

PC 3 0.113 0.132 -0.015 -0.294 0.112 -0.105 -0.033 0.120 0.926 
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 Sample 2, see Figure 47, shows many of the same properties as before.  Obvious 

vortex mixing along with a definitive two-part coloring are the predominate features of 

the sample.  As expected the sample is heavily colored from PC 1, due largely in part to 

its similar major elemental composition as the other two samples from this region of the 

EDS model.  Unfortunately for this sample, no new features appear due to the higher 

resolution images.   

 
Figure 47. RGB scores image for sample 2 using the three principal components from the raster 
model. 



83 

 

 Like sample 2, sample 13 (Figure 48) shows many of the same features previously 

identified using the EDS model.  The higher resolution does identify more vortex 

swirling in the sample that was not readily visible in the EDS spot model.  The RGB 

coloring does lean heavily to PC 1 as expected but is closer to sample 28 than the other 

two samples from the same region in the EDS model.   

 
Figure 48. RGB scores image for sample 13 using the three principal components from the raster 
model. 
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 When reviewing sample 28, shown in Figure 49, it is similar in coloring to sample 

13.  This is surprising considering its location compared to the grouping of the other three 

samples.  This sample is homogenous and uniform compared to the other samples in this 

model set.   

 
Figure 49. RGB scores image for sample 28 using the three principal components from the raster 
model. 
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 Sample 47 exhibits the most variation and deviation from the other three samples 

which is not expected, as shown in Figure 50.  The features of the sample are still 

consistent with the EDS spot model.  There is an improvement to the vortex swirl and a 

reduction in pixilation when compared to the EDS model.   

  

 
Figure 50. RGB scores image for sample 47 using the three principal components from the raster 
model. 
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V. Conclusion 

This research used application of PCA and multiple imaging techniques to improve 

the scientific understanding of fallout formation, identified particles that represent the 

most valuable types for forensics purposes, and established elemental compositions and 

correlations between major soil elements.  The wide range of physical characteristics 

within the fallout samples ensured a representative sample set of the bulk fallout 

formation characteristics leading to improvements in the resulting model.  The 

application of principal component analysis to this fallout sample set has proven to be a 

viable method in understanding the underlying elemental system.  This system describes 

the correlation between major elemental constituents and the incorporation of unspent 

nuclear fuel.  Using multiple spectroscopies and imaging techniques produced a robust 

and detailed data set that was easily manipulated and evaluated through the use of PCA.  

With PCA’s ability to reduce the difficulty of the problem, additional information can be 

added to the model without an increase in solution difficulty.  By using principal 

component analysis, the correlation between major elements and the unspent nuclear fuel 

moves from an anecdotal solution to a quantifiable result.    

5.1. Research Conclusions 

 The EDS model showed that the fifty fallout samples could be grouped into three 

regions.  One region consisted of the apparent porous surface samples high in magnesium 

and calcium.  The second group consisted of the homogenous samples with a uniform 

high activity high in aluminum and titanium.  The final group was the mixed set of 

homogenous and heterogeneous samples with high and low activity regions.  By first 
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developing the spot sample model, it was possible to identify unknown samples for 

forensic value.  The time required to develop the spot sample model was relatively short 

and could be completed in hours depending on the number of samples used.  Using the 

EDS spot sample model first would drastically reduce the amount of time spent on time-

intensive forensic methods for fallout of low forensic value.  

The highest forensics group was shown to be the homogenous group with high 

aluminum and titanium or those that are low in silica, potassium, sodium and/or iron.  

This homogenous group was transparent with no physical deformations or surface 

features.  Additionally, the samples that had high heterogeneity exhibited regions of low 

activity making these samples of low forensics value when attempting to recover unspent 

nuclear fuel.   

 The development of a representative x-ray mapping model is required to 

incorporate the autoradiography images and activity data.  The autoradiography data 

couples the major elemental compositions with the trace unspent nuclear fuel.  Through 

the development of this model, with older fallout samples, the quantitative results will 

improve the understanding of fallout development and the incorporation of unspent 

nuclear fuel.  Older samples are required due to the fission product saturation in newer 

samples.  The full raster quantitative results can be used to draw physical characteristics 

of high value forensic samples reducing the need for instrumentation time and evaluation 

during a time critical event. 
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5.2. Future Research 

 Several key insights were developed during this research that will improve future 

work in this area of nuclear forensics.  First SEM and XRF are equivalent spectroscopy 

techniques that provide similar information.  However, the FWHM resolution of a typical 

SEM is higher than most XRF machines.  This should be approached with caution as an 

order of magnitude in resolution on the spectroscopy may prove to be significant for 

major elemental compositions and actinide incorporation.   

Secondly, high resolution raster images do not provide enough additional information 

to justify the time required to develop such images.  The orders of magnitude difference 

between these images and the autoradiography require scaling down the raster image and 

upscaling the autoradiography images.  This approach adds multiple cases where error 

can be introduced into the model.  By selecting lower resolution images a larger data set 

can be investigated in the same amount of time improving the model with more data 

points.   

 Finally, in an effort to reduce any bias or size fraction dependency the same 

process should be performed on a larger size fraction of fallout.  The change in size 

fraction may improve the minor/major elemental concentrations such as magnesium or 

titanium improving the model’s prediction capability for incorporation of actinides.  

Additionally, changing the size fraction may yield information about dependencies or 

correlations between major elements and the actinides that is due to fallout particle size. 
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VI. Appendix A 

 

 

 
Figure 51. EDS spot sample principal component 1 elemental variable weighting. 

 
Figure 52. EDS spot sample principal component 2 elemental variable weighting. 
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Figure 53. EDS spot sample principal component 3 elemental variable weighting. 
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